
ht. J. Heat Mass Transfer. Vol. 22, pp. 131- 136 
Pergamon Press Ltd. 1979. Printed in Great Britain 

LUMINESCENCE OF TWO-PHASE INHOMOGENEOUS 
MEDIA OF CYLINDRICAL GEOMETRY 

K. S. ADZERIKIIO, V. I. ANTSULEVICH, YA. K. LAPKO and V. P. NEKRASOV 

Institute of Physics of the B.S.S.R. Academy of Sciences, Minsk, U.S.S.R. 

(Receiwd 6 April 1977) 

Abstract-An iterative rapidly convergent method for solving the radiation transfer equation is suggested. 
The adequate accuracy of the previously derived formula for the emissivity of a two-phase medium of 
cylindrical geometry is shown and the emissivity nomograms are presented. An analysis is made of the 
limits of applicability of a one-dimensional approach to calculate the luminescence of nonisothermal 

media of cylindrical geometry. 

NOMENCLATURE 

= 1(7,0,4X radiation intensity at point 7 

and in direction I = I(& 4); 

Planck radiation intensity for frequency v 

and temperature T ; 

= J(r) = & s I(z, 4 #)dQ 
(4W 

averaged radiation intensity; 

= S(7), function of radiation sources; 

absorption and scattering coefficient, 

respectively ; 
= k + CT, attenuation coefficient of the 
medium ; 

= - probability of quantum survival 
k+a’ 

(or the Schuster number); 

tem~rature along the cylinder axis ; 
surface temperature ; 

0 < I < R, cylinder radius; 

O<r=j;udr+,={eaadr, 

optical radial thickness of the cylinder; 

r”(x), n-order Bessel function of imaginary 

argument. 

1. INTRODUCTION 

OPTIMIZATION of modern power plants associated 

with a considerable increase in the temperature of 

the coolant, which is usually a mixture of gases and 

the condensed phase particles, requires as precise 

determination of their thermodynamic characteristics 
as possible. In this case the fraction of radiation in 

the total energy balance becomes appreciable, and it 
is imperative, therefore, to have exact solution of the 
radiative heat-transfer problems. On the other hand, 
it is necessary to justify the radiative transfer 

equation for more real physical models and de- 
termination of the limits of applicability of its 
solutions, and on the other, to use reliable spectro- 
scopic characteristics of the media under study. The 

solution of radiative heat-transfer problems plays an 
important part in the study of the entry of space 

vehicles into the atmosphere of the Earth and other 

planets, in the study of interaction of high-power 
(laser) radiation with the material, in calculating the 

heating of the bases of propulsors, visibility of the 

flames of power plants, and of the energy balances of 

planetary atmospheres etc. 

At present a considerable amount of attention is 

devoted to radiation propagating in nonplane two- 
phase media. The plane layer approximation for the 

radiative transfer problems within the optical thick- 

ness 7 < 3 may introduce appreciable errors of above 

30-40% [ 11. Radiation propagating in two-phase 

nonplane media is handled by the approximate 

methods [l-3], improved Monte-Carlo methods 

[4, SJ, iterative techniques [6,7], as well as by the 

methods of reducing the initial integro-differential 

equation to the integral ones with subsequent 

numerical integration [S-10]. It shoufd be noted that 

a search for the approximate methods to calculate 

thermal behaviour of two-phase nonplane media is 

expedient both from the viewpoint of rapid radiation 

estimates, and from the point of view of determining 

the most suitable first iteration in numerical calcu- 

lations of the radiative transfer equation. 

In this paper the iterative method is suggested to 
solve the radiative transfer equation for two-phase 
media of cylindrical geometry which is based on 

approximate solution technique developed in the 

previous work [l]. In addition, the limits of 

applicability of this approximate solution have been 

ascertained and an analysis has been made to 

establish the possibility of its application to study the 

luminescence characteristics of two-phase noniso- 

thermal cylindrical media by averaging the tempera- 
ture and optical characteristics of the medium by a 
variety of techniques. 

The equation of radiation transfer in a two-phase 
cylindrical medium is of the form [ 1 l] 

( ai sin 4 dl 
sin@ cos(bz--- 7 a+ 

! 
+ 1(7,e, rb) = S(7), (1) 
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where 
S(z) = 12f(rf+ S,(z). (21 

The function Se(r) represents distribution of the 
radiative sources in the medium being studied. In the 
case of locaf the~odynam~~ ~u~libriurn~ S,(r) = 
(1 -A)B(Tf. In equation (I) a spherical indicatrix of 
radiation scattering on a volume element is assumed. 
This assumption may be considered justified for the 
case of multiple scattering if the scattering indicatrix 
is expressed as [l, 6,121 

p(l,1’)=a+4x(l-a)&l-I’). (3) 

This expression produces a radiative transfer equa- 
tion with a spherical indicatrix of scattering by 
performing substitution of aa for a. The quantity a 
has the meaning of twice the semi-spherical fraction 
of backward scattering when radiation interacts with 
a volume element of the substance. 

For zero boundary conditions the solution of 
equation (1) for a cylindrical homogeneous medium 
has been suggested in [l] as 

J(z) = B[l -AT,(kr)], (4) 

where 

k = [3(1--A)]“‘; 
_ 

A - ’ = J,(kr,) A- $kr, (kr,). (6) 

From equation (5), an an~yti~al expression may be obtained for the emissivity of a two-phase cylindrical 
medium [l] 

E=E(ZOte)= I-exp 

in which 

5 = 4ksintl 

4-l-ksinB_ 

2.ALGORlTHMSTRUCTURE 

For the purpose of ~rformin~ numerical integration of equation (I), the iterative procedure has been used. 
Preliminary calculations have indicated that the best choice for the first iteration is equation (4). By 
intr~ucing the variables y = cos B and p = cos cf, and taking into account the axial symmetry of the medium, 
equation (1 f may be written as 

The boundary conditions for this above equation are 

I(rEo,~,y)=O at --I <I~<O. (9) 

Now, let us introduce yk E [O, l](k = 1,2,. . .) which are the abscissas of Gauss’ quadrature expression in y for 
the integral on the RHS of equation (8). Then equation (8) may be replaced by 

ai, 1 -P2 % f 1 
-%+ 

-- 
i _ s 

? a/.4 (l-y;)“2 * - ir 
1. 

It(q-,,itj=o, at -i=s,.iu,<o J 

where 1, = I@, p7 Y,.), 

On changing the variables 

x = rg and y = r(I --p2)*” (12) 

the domain [O % z < zo, - 1 $ p < I] will reduce to a semi-circle [O < y < to. -to Q x < rO], with the 
operator ~(a/a~)~[(l -~*)/~I(~/~~) being brought to the form a/ax. The lines ~(1 --$)i” = const.; which are 
the characteristics of the differential operator in (IO), transform into the characteristics y = const. of the 
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differential operator a/?&. Thus, instead of the system (IO), we have 

%+ 1 
Z -& 

ax (I-$“‘2 k - 

Z,[-(r~-y*)“2,yj=0 ai O=yCrc, k=1,2 ,.,., n. 
(13) 

The grid used for the solution of the above system of equations is shown in Fig. 1. At nodal points along 
the characteristics yi = const., the solution of equations (13) is of the form 

Zk,i,j = Z,,f- ~,j.~~,~~cxpJ- (I ~)~,2] j:L, s’exPr(l _~~)L’ijdX, (14) 

where 

A~uming~ approximateiy, that 

a& 
z -&Js,(xJ--s,(~~-J 

1 

we may evaluate the integral on the RHS of relation (14) 

Axi = x~-x~_~. 

Pk,i =~tl-4n.i)(l-Y~)‘!2-e.i. 

Let us now represent the integral Z&t)+ equation (11 f, in the form of the Gaussian sum 
1 

' Z,(z) = dy’ 
j I 

ZfT, &',I") 
,z I,2 W 2 i &~h~ds 

-lU-P 1 0 I=1 

where 

(16) 

*Ffc 74 = c I,_, ~(~~~~~~ w. m J 
Here, the weights A, and the nodes yk coincide with the positive weights and nodes in the quoted Gaussian 
quadrature expression in y for the interval [ - 1, 13. 

Assuming that Z is linearly dependent on p in the interval [,u,,,-. r, laj, i.e. 

Z(%AYk) = 
~-k-1 Z,+ &-1U Zr_tr 
li~-&l-i &--Z&t-l 

Z, = Z(% &I, Yk) 

the functions Y(T, yk) in equation (16) can be given in the form 

.F(r*z;ra)= r,f&Z,+~,-,Z,-,)~ 

where 

B,= -+--“Ay~+xW~I~arcsin~-arcsin*J], 

C,_, =&- 
r c 

Ay,,, + x,,, arc sin “i;D - arc sin F 
j-i 

, 
m 

Ax,,, = x,-x,,,...r, by, = ~~--y,,,_.~. 

This allows equation (16) to be written as 

Z&f = CA,CCB,Z(~,C~~,Y~)+C~-IZ(Z,IL,-~~YR)~. 
k nr 

(17) 

(W 

(1% 

(20) 

Relations (14) and (20) malce it possible to Accounting for the boundary conditions (13), re- 
describe the structure of the algorithm to solve the lation (15) is calculated for all the nodal points of the 
radiative transfer problem for a two-phase cylindri- grid (Fig. 1). The resulting intensity values are 
cal medium under the condition of Iocal thermo- substituted into formula (20) to determine the 
dynamic equilibrium. For each point rh the value of integral term of the transfer equation in a new 
Z&) = nJ(r,) is calculated by formula f4) with approximation. The iteration is carried out until the 
subsequent calculation of S*(r) by formula (11). solution of the preassigned accuracy is’obtained. 
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0.95. With increase in the optical radius of the 
cylinder, relation (7) yields substantially more 
accurate results. At 2 < 0.9 and T,, 2 0.1, the error is 
estimated to be practically within 20-25x. It should 
be noted that relation (5) yields much greater 
accuracy, as is evident from Table 1. In addition, the 
tabulated data define the dependence of the lumin- 
escence intensity of a two-phase cylinder on the angle 

YI 4 and confirm the correctness of its calculation 
performed in [ 11. 

FIG. 1. Choice of nodal points for solution of the system of On the basis of the numerous calculations carried 

equations (13). out, emissivity nomograms have been constructed 

Table 1. Comparison between the approximate solution I&, 0,4)/B, equation (5), and exact values of I,(r,, 0,+)/B 
(1 = 0.95) 

To 0.1 0.5 1.0 5.0 10.0 
e 

4 IIB ITlB I/B W IIB I,lB IIB I,lB I/B IT/B 

0" 0.0105 0.0107 0.052 0.054 0.101 0.106 0.341 0.339 0.404 0.401 
15” 0.0102 0.0104 0.050 0.053 0.099 0.103 0.336 0.332 0.399 0.395 
30” 0.0092 0.0094 0.047 0.048 0.093 0.096 0.319 0.318 0.382 0.379 

70” 45” 0.0077 0.0077 0.040 0.041 0.082 0.083 0.292 0.291 0.353 0.349 
60” 0.0055 0.0055 0.031 0.03 1 0.065 0.064 0.254 0.250 0.313 0.306 
75” 0.003 1 0.003 1 0.0187 0.0182 0.043 0.041 0.205 0.194 0.265 0.251 
85” 0.0010 0.0010 0.0065 0.0062 0.016 0.015 0.118 0.106 0.193 0.174 

0” 0.0179 0.0182 0.066 0.071 0.110 0.116 0.285 0.283 0.333 0.331 
15” 0.0174 0.0177 0.066 0.070 0.109 0.114 0.282 0.280 0.330 0.325 
30” 0.0159 0.0161 0.063 0.066 0.105 0.109 0.272 0.270 0.320 0.314 

30” 45” 0.0133 0.0134 0.057 0.058 0.098 0.099 0.256 0.252 0.302 0.296 
60 0.0098 0.0098 0.047 0.047 0.086 0.085 0.235 0.229 0.279 0.270 
75” 0.0056 0.0056 0.031 0.030 0.064 0.061 0.212 0.200 0.252 0.236 
85” 0.0018 0.0018 0.011 0.011 0.027 0.026 0.160 0.144 0.221 0.198 

The above algorithm was used to compose the 
program coded in FORTRAN-IV. Numerical calcu- 
lations were done on the “EC-1030” and “EC-1022” 
computers. The results have demonstrated the 
effectiveness of the method suggested. The accuracy 
of 0.1% for 2. N 0.01-0.1 is attained after 2-3 
iterations and for t,, - 1, after 5 10 iterations, and 
then as 7. rises, the number of iterations increases 

and at 7. - 15 it amounts to about 100. 
The program provides for the division of the 

interval of integration over $[O, z/2] into 13 parts, 
and over 0[0, n/2], into 3 parts. 

In choosing the number of the division points, the 
accuracy control was made as this number increased 
(up to 22 points for 4 and up to 8 points for 0).* 
Integration over 4 for ‘I~ = 10 introduces an error of 
about 2% at Iz = 0.3 and of about 12% at 1 = 0.999, 
while integration over 0 results in the error of about 
3% at T,, = 0.01 which decreases greatly with 

increasing me. 

3. ACCURACY OF THE APPROXIMATE 
RELATIONS (5) AND (7) 

Comparison between the accurate calculations 

and predictions by relation (7) indicates that the 
results show a satisfactory agreement for 1 C 0.90- 

*The weights and nodes of Gauss’ quadrature formula 
have been taken according to [ 133. 

which are given in Fig. 2. The curves for small 
optical thicknesses and large probabilities of quan- 
tum survival have been corrected by accurate 
calculations. 

The calculated luminescence indicatrix for a two- 
phase cylindrical medium, presented in Fig. 3, 
exhibits a considerable variation when passing from 
small to large optical thicknesses, which is the fact 
originally established in [l]. Thus, the degree of the 
luminescence indicatrix anisotropy 

r = I(70, m=n,2 

I(7,, m=o 

amounts to about 10 at 70 = 0.05 and 2 = 0.999, to 
0.8 at z0 = 1.0 and is only 0.56 at = 10. 7,, 

4. LUMINESCENCE OF A NONISOTHERMAL 
TWO-PHASE CYLINDER AND POTENTIALITY 
OF A ONEDIMENSIONAL APPROXIMATION 

TECHNIQUE 

In the majority of cases the two-phase media are 
nonisothermal, i.e. B(T) = B[T(r)]. To study the 
luminescence characteristics of such media having 
cylindrical configuration, we have assumed the 
following dependence of temperature T and the 
absorption coefficient K on the optical thickness of 
the cylinder 

T(7) = T, exp( - crT2), K(7) = Kg exp( - ctT2) , (21) 
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FIG. 2. Emissivity nomograms for a two-phase cylindrical medium: 
(a)~=90°~(b)ff=6~;(c)~=3~. 

where T, = T(t,) = NOR, and T’, ranges from 500 
to 2000 K. In addition to numerical calculations with 
regard for relations (21), the possibility has been 
studied of using relation (7) when different tech- 
niques of averaging the temperature and the absor- 

ption coefficient are employed, i.e. the possibility of 
one-dimensional modeling of a nonisothermal two- 
phase cylinder. The averaging has been performed as 
follows 

I /‘R 

s R 

~(r)T(r)dr 

(cl 7: = -+____ 

s x(r) dr 
0 

s R 

ic(r)B[T(r)J dr 
(d) B(T) = ’ R 

s 

> 
x(r)dr 

0 

R 

K(r)T(r)dr 

(e) 
s c= 0 

r 

R 

T(r)dr 
LO 

s 

R 

drP[W)] dr 

(f) 
,=,A!_ 

I 

x 

WW)] dr 

0 

The predicted data for the intensity of radiation 
emitting from a two-phase cylinder, which have been 
obtained by performing numerical integration of the 
transfer equation and using a one-dimensional 
approximation, are presented in Figs. 4 and 5. It may 
there be seen that the best coincidence is observed at 
small optical thicknesses and, moreover, the un- 
certainty introduced by relation (7) diminishes 
considerably with a decrease in the probability of 
quantum survival. Of the quoted averaging tech- 
niques (a-d; e, f), the technique (a, e) is preferable. 
With increase in the optical thickness, the one- 
dimensional representation results in larger errors 
since radiation from a hot central region scarcely 
reaches the boundary surface. Figure 4 shows also 

I , J(B)/J(%) 

I 
0 025 05 075 IO 1.25 1.5 

FIG. 3. Luminescence indicatrix of a two-phase cylinder at 
I = 0.999. (1) To = 0.01 ; (2) 0.05 ; (3) 1.0 ; (4) 10.0. 
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FOG. 4. Comparison of the accurate predictions and 
different averaging techniques for determining radiation of 

two-phase cyIinders (A = 0.3). (a) z0 = 0.01; (b) 10.0. 
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l-____ - -- 
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500 nwo 2oco 

FIG. 5. Comparison of the accurate predictions and the 
averaging technique (a, e) at different probabilities of 

photon survival (T,, = 0.01). (1) 1 = 0.7; (2) 0.9; (3) 0.99. 

the effect of the parameter CI which characterizes the 
temperature field gradient in the medium under 
study. 

5. CONCLUSION 

The suggested iterative method is very effective in 
the case of a two-phase medium of cylindrical 
geometry whose luminescence characteristics are to 
be calculated. Accurate calculations of the emissivity 
have allowed determination of the limits of applica- 
bility for the approximate relation (7) which was 
derived in [l]. The emissivity nomograms for a two- 
phase cylinder are very practical when the spectral 
relationships of the luminescence characteristics are 
required. In the case of nonisothermal media, the 
approximate relations used for homogeneous media 
with averaging of the physical quantities may 
introduce appreciable errors. Here it is necessary to 
resort to the accurate numerical methods, one of 
these being described in the present paper. 
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LUMINESCENCE D’UN MILIEU BIPHASIQUE NON HOMOGENE ET 
DE GEOMETRIE CYLINDRIQUE 

R&sum&-On propose une mbthode ittrative rapidement convergente pour rtsoudre l’bquation de 
transfert radiatif. On montre quelle est la prttcision des formules antirieures pour l’imissivitd d’un milieu 
diphasique B g&om&trie cylindrique et on prtsente les nomogrammes d’emissivitt. On analyse les limites 
d’application d’une approche monodimensionnelle pour calculer la luminescence d’un milieu non 

isotherme de gCom&trie cylindrique. 

LUMINESZENZ VON INHOMOGENEN ZWEI-PHASEN-MEDIEN VON 
ZYLINDRISCHER GEOMETRIE 

Zusammenfassung-Es wird eine iterative, schnell konvergierende Methode fir die Lijsung der 
Strahlungsiibergangsgleichung vorgeschlagen. Die gute Genauigkeit der an anderer Stelle abgeleiteten 
Gleichung Wr das Emissionsvermagen eines Zwei-Phasen-Mediums mit zylindrischer Geometrie wird 
gezeigt und Nomogramme des EmissionsvermBgens werden angegeben. Die Anwendungsgrenzen werden 
untersucht fir ein eindimensionales Verfahren zur Berechnung der Lumineszenz von nicht-isothermen 

Medien mit zylindrischer Geometrie. 

CBEqEHME ABYX@A3HbIX HEOflHOPOAHbIX CPEA ~MflMHflPM~ECKO~ 
KOH@WYPA~WM 

AHH~P~R- ~~A_ilO~eH ,,TCpNU,OHHbIti 6bICTpo CXOAnUllriiCr MCTOA PWICHHS ypaBHCHWl W+W.HOCa 

83,,y',eHWII. nOKa3aHa ,'AOBJCTBOpUTeJbHaK TO'IHOCTL PaHee nOfly'EHHO8 @OpMyJlbI AAS! H3nyw 

TC,,bHOi C~OCO~HOCTH AByX@-JHOti CpAbI UHJUlHApWCCKOti KOH'.$WTYPWHH N QNiBCAeHbI HOMO- 

rPaMMbl A,TR CC paC'leTi+. kiCCJl'ZAOBaHb1 I-PaHHUbI npl,MeHUMOCTU OAHOMepHOrO paC'ETa CBVICHWII 

H‘%3OTC.,,MH'ECKHX CPA U,,,l~HApW,CCKO~ KOH@WYPWHIi. 


