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Abstract — An iterative rapidly convergent method for solving the radiation transfer equation is suggested.

The adequate accuracy of the previously derived formula for the emissivity of a two-phase medium of

cylindrical geometry is shown and the emissivity nomograms are presented. An analysis is made of the

limits of applicability of a one-dimensional approach to calculate the luminescence of nonisothermal
media of cylindrical geometry.

NOMENCLATURE
I, = I(t, 6, ¢), radiation intensity at point t
and in direction I = (9, ¢);
2 3
B, =BTy =0T op)

Planck radiation intensity for frequency v
and temperature T;

J, =l@=1| Ie érdo,
4r Yam

averaged radiation intensity;

S, = S(t), function of radiation sources;

k, 0, absorption and scattering coefficient,
respectively;

«, = k+ o, attenuation coefficient of the
medium ;

A, = ———6—, probability of quantum survival

k+o

(or the Schuster number);
T,, temperature along the cylinder axis;
T, surface temperature ;
0 <r <R, cylinder radius;
R

r
O0<t=| adr<to=1] adr,

[} 0
optical radial thickness of the cylinder;
I,(x), n-order Bessel function of imaginary
argument.

1. INTRODUCTION

OpTiMIZATION of modern power plants associated
with a considerable increase in the temperature of
the coolant, which is usually a mixture of gases and
the condensed phase particles, requires as precise
determination of their thermodynamic characteristics
as possible. In this case the fraction of radiation in
the total energy balance becomes appreciable, and it
is imperative, therefore, to have exact solution of the
radiative heat-transfer problems. On the other hand,
it is necessary to justify the radiative transfer
equation for more real physical models and de-
termination of the limits of applicability of its
solutions, and on the other, to use reliable spectro-
scopic characteristics of the media under study. The
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solution of radiative heat-transfer problems plays an
important part in the study of the entry of space
vehicles into the atmosphere of the Earth and other
planets, in the study of interaction of high-power
(laser) radiation with the material, in calculating the
heating of the bases of propulsors, visibility of the
flames of power plants, and of the energy balances of
planetary atmospheres etc.

At present a considerable amount of attention is
devoted to radiation propagating in nonplane two-
phase media. The plane layer approximation for the
radiative transfer problems within the optical thick-
ness t < 3 may introduce appreciable errors of above
30-40% [1]. Radiation propagating in two-phase
nonplane media is handled by the approximate
methods [1-3], improved Monte-Carlo methods
{4, 5], iterative techniques [6,7], as well as by the
methods of reducing the initial integro-differential
equation to the integral ones with subsequent
numerical integration [8-10]. It should be noted that
a search for the approximate methods to calculate
thermal behaviour of two-phase nonplane media is
expedient both from the viewpoint of rapid radiation
estimates, and from the point of view of determining
the most suitable first iteration in numerical calcu-
lations of the radiative transfer equation.

In this paper the iterative method is suggested to
solve the radiative transfer equation for two-phase
media of cylindrical geometry which is based on
approximate solution technique developed in the
previous work [1]. In addition, the limits of
applicability of this approximate solution have been
ascertained and an analysis has been made to
establish the possibility of its application to study the
luminescence characteristics of two-phase noniso-
thermal cylindrical media by averaging the tempera-
ture and optical characteristics of the medium by a
variety of techniques.

The equation of radiation transfer in a two-phase
cylindrical medium is of the form [11]

sind(coss %=L X papy=s,
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where

S(t) = AT (x)+ Splz) {2}
The function S,(t) represents distribution of the
radiative sources in the medium being studied. In the
case of local thermodynamic equilibrium, Sy{z) =
(1—2A}B(T). In equation {1} a spherical indicatrix of
radiation scattering on a volume element is assumed.
This assumption may be considered justified for the
case of multiple scattering if the scattering indicatrix

is expressed as [1, 6, 12]
(L1} = a+4dn(l—ajo(-r). 3)

2 e26ind 43112
I(r,9,¢)=3{;_«exp{_(to T sm;qiﬁ‘)n +zcos(ﬂ
¢ n ]

) (‘rcosqﬁ

S o

This expression produces a radiative transfer equa-
tion with a spherical indicatrix of scattering by
performing substitution of as for ¢. The quantity a
has the meaning of twice the semi-spherical fraction
of backward scattering when radiation interacts with
a volume element of the substance.

For zero boundary conditions the soium)n of
equation (1) for a cylindrical homogeneous medium
has been suggested in [1] as

J(x) = B[1—- AT, (kv)], )

Ig[k(x +12sin d))“z]exp(c

/oo izt sin? ¢/ L&n 3
where
k {3( ]!'/ A7F = 170("('50)“5‘%”‘;1 {kty). {6)
From equation (5), an analytical expression may be obtained for the emissivity of a two-phase cylindrical
medium [1]
6&(2 __Krd — l—exp(—lir—"
To 3kt 44 L9
g= g1y, O = 1—exp smf? - : N ¥
~ (4 +ksin 9){3 +2k[1 —exp(——zﬁ)”
in which
_ 4ksind
" d+ksing’

2. ALGORITHM STRUCTURE
For the purpose of performing numerical integration of equation {1), the iterative procedure has been used.
Preliminary calculations have indicated that the best choice for the first iteration is equation (4). By
introducing the variables y = cos 8 and x = cos ¢ and taking into account the axial symmetry of the medium,

equation {1) may be written as

al 1—gtal P
o 2y1/2 =
(=% ( 6‘: T 8u> = nf_l 1

The boundary conditions for this above equation are

I{'{g,}l, }}} = G at

Now, let us introduce y, [0, 1](k = 1,2,...

dw ! APy

A= e, ',y )dy' + (1~ A)B(x). 8}
U 0
—i1gu<g0 e}

} which are the abscissas of Gauss’ quadrature expression in y for

the integral on the RHS of equation (8). Then equation (8) may be replaced by

aI,  1—u?al,
“8r+ Ty

Ik{’r(}s Au) = 09

where I, = I{t, &, ),
1
8, a

On changing the variables

x=1pu and y=1t{l—pu

the domain [0 <1< 1, —1€u<

1
x““w[%lo(f)**'(l”i)l?(f)], Iy(r) = J‘

1

I =38

a2y /2 tk 13
(1—7) ’ 10)

—1<p<g0
du, ! ' ' ’

A |, (Eady (11)
2)![2 (12}

1] will reduce to a semi-circle [0 <y <14, — 15 € x < 7], With the
operator u(8/d7)+{(1 — p*)/x](8/8u) being brought to the form 8/8x. The lines (1

~ u*? = const., which are

the characteristics of the differential operator in (10), transform into the characteristics y = const. of the
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differential operator 8/@x. Thus, instead of the system (10), we have

a1, 1

R

f,‘[ @G-y y]=0at0=y<1, k=L.2,..,n

(13)

The grid used for the solution of the above system of equations is shown in Fig. 1. At nodal points along
the characteristics y, = const., the solution of equations (13} is of the form

X

Leis=1;- 1,}"11:,:"5’33‘?{ = z)uz]‘[‘ Skexp{(l 2)1;3}‘}3‘ {14}
where
Ax;
Ly =100, yp Yy Qi = CXP{'" ‘(’1":—2‘?}’2”1 Ax; = X;—x;_y.
) B
Assuming, approximately, that
28,
‘5‘; =2 [Sk(xi) Slxi- )]
we may evaluate the integral on the RHS of relatlon (14)
Liis = oo 1,5 Qi+ Sei—1,5(1 —Yg}ml’k.ﬁ' (1—qy; "pk,i}sk,i,j(l "?f)m, (1%
1
Pri = E {1—-q.)(1 -y -
Let us now represent the integral I,(r), equation (11), in the form of the Gaussian sum
Iz, ¢, A
Io() = [ f ( @fz;’, 1@l G~ 3 4w, (16)
where
I(tv lugs ?k}
Flt,y,) = et DI
Cw=X)  T-wp7

Here, the weights A4, and the nodes y, coincide with the positive weights and nodes in the quoted Gaussian

quadrature expression in y for the interval { — 1, 1].

Assuming that ] is linearly dependent on  in the interval [y, , #t..), 1.8.

I(t,ﬂ,'yk)z )u_xum*l 1m+ ”m“}’t Im.,‘.x\,
[ B = M — 1 (17)
Im = I(’ts }uma yk)
the functions 7 (z, y,) in equation (16) can be given in the form
Fl, )= Bulut+Cpoilp-1)s {18}
where
— 1 ( X 1
B,=— Axm [Ay,,,+xm 1 arcsin 2™ — arcsin 2=t T )l
1 ( . X . Xy
Cpoy = Ax. {&ym+xm arcsin —* — arcsin )\{, {19)
Axm = Xy ™ Xy 18 AYm = Vm ™ VYm~1-
This allows equation (16) to be written as
IO(T) = ;Ak Z [Bml(r’ Homs '}’k) + Cm— II(T> Hlyg e 1 ?k)} (20)
m

Relations {14) and {20) make it possible to
describe the structure of the algorithm to solve the
radiative transfer problem for a two-phase cylindri-
cal medium under the condition of local thermo-
dynamic equilibrium. For each point 1,, the value of
Is(zr) = =J(1;) is calculated by formula (4) with
subsequent calculation of S{r) by formula (11).

Accounting for the boundary conditions (13), re-
lation (15) is calculated for all the nodal points of the
grid (Fig. 1). The resulting intensity values are
substituted into formula (20} to determine the
integral term of the transfer equation in a new
approximation. The iteration is carried out until the
solution of the preassigned accuracy is obtained.
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FiG. 1. Choice of nodal points for solution of the system of
equations (13).
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0.95. With increase in the optical radius of the
cylinder, relation (7) yields substantially more
accurate results. At 4 < 0.9 and 7, > 0.1, the error is
estimated to be practically within 20-25%. It should
be noted that relation (5) yields much greater
accuracy, as is evident from Table 1. In addition, the
tabulated data define the dependence of the lumin-
escence intensity of a two-phase cylinder on the angle
¢ and confirm the correctness of its calculation
performed in [1].

On the basis of the numerous calculations carried
out, emissivity nomograms have been constructed

Table 1. Comparison between the approximate solution I{zg, 0, ¢)/B, equation (5), and exact values of I1(tq, 6, ¢)/B

(4 = 095)
T, 0.1 0.5 10 50 100
7}
¢ 1/B 1./B I/B I/B I/B 14/B /B I./B /B 1./B
0° 00105 00107 0052 0054 0101 0106 0341 0339 0404 0401
15° 00102 00104 0050 0053 0099 0103 0336 0332 0399 0395
30° 00092 00094 0047  0.048 0093 009 0319 0318 0382 0379
70° 45 00077 00077 0040  0.041 0082 0083 0292 0291 0353 0349
60° 00055 00055 0031 0031 0065 0064 0254 0250 0313 0306
75° 00031 00031 00187 00182 0043 0041 0205 0194 0265 0251
85° 00010 00010 00065 00062 0016 0015 0118 0106 0193  0.174
0° 00179 00182 0066 0071 0110 0116 0285 0283 0333 0331
15° 00174 00177 0066 0070 0109 0114 0282 0280 0330 0325
30° 00159 00161 0063 0066 0105 0109 0272 0270 0320 0314
30° 45 00133 00134 0057 0058 0098 0099 0256 0252 0302 029
60° 00098 00098 0047 0047 008 0085 0235 0229 0279 0270
75° 00056 00056 0031 0030 0064 0061 0212 0200 0252 0236
85° 00018 00018 0011 0011 0027 0026 0160  0.144 0221  0.198

The above algorithm was used to compose the
program coded in FORTRAN-IV. Numerical calcu-
lations were done on the “EC-1030” and “EC-1022”
computers. The results have demonstrated the
effectiveness of the method suggested. The accuracy
of 0.1% for 7, ~001-0.1 is attained after 2-3
iterations and for 7y ~ 1, after <10 iterations, and
then as 7, rises, the number of iterations increases
and at 7, ~ 15 it amounts to about 100.

The program provides for the division of the
interval of integration over ¢[0, n/2] into 13 parts,
and over 0[0, n/2], into 3 parts.

In choosing the number of the division points, the
accuracy control was made as this number increased
(up to 22 points for ¢ and up to 8 points for 6).*
Integration over ¢ for 1, = 10 introduces an error of
about 2% at 4 = 0.3 and of about 129, at 1 = 0.999,
while integration over  results in the error of about
3% at 1o=001 which decreases greatly with
increasing 7,.

3. ACCURACY OF THE APPROXIMATE
RELATIONS (5) AND (7)

Comparison between the accurate calculations
and predictions by relation (7) indicates that the
results show a satisfactory agreement for A < 0.90-

*The weights and nodes of Gauss’ quadrature formula
have been taken according to [13].

which are given in Fig. 2. The curves for small
optical thicknesses and large probabilities of quan-
tum survival have been corrected by accurate
calculations.

The calculated luminescence indicatrix for a two-
phase cylindrical medium, presented in Fig. 3,
exhibits a considerable variation when passing from
small to large optical thicknesses, which is the fact
originally established in [1]. Thus, the degree of the
luminescence indicatrix anisotropy

r= 1(105 0)|U=n/2
I(zy, 0)ly=¢

amounts to about 10 at t, = 0.05 and A = 0.999, to
0.8 at 7, = 1.0 and is only 0.56 at 7, = 10.

4. LUMINESCENCE OF A NONISOTHERMAL
TWO-PHASE CYLINDER AND POTENTIALITY
OF A ONE-DIMENSIONAL APPROXIMATION
TECHNIQUE
In the majority of cases the two-phase media are
nonisothermal, i.e. B(T)= B[T(r)]. To study the
luminescence characteristics of such media having
cylindrical configuration, we have assumed the
following dependence of temperature T and the
absorption coefficient k on the optical thickness of
the cylinder

T(z) = Tyexp(—ar?), k(1) = ko exp(—at?) , 21
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Fi1G. 2. Emissivity nomograms for a two-phase cylindrical medium:
(@) =90°: (by 8 = 60°; {c) 0 = 30°.

where T, = T(ty) = 300K, and T, ranges from 500
to 2000 K. In addition to numerical calculations with
regard for relations (21), the possibility has been
studied of using relation (7) when different tech-
niques of averaging the temperature and the absor-
ption coefficient are employed, i.e. the possibility of
one-dimensional modeling of a nonisothermal two-
phase cylinder. The averaging has been performed as
follows

0

_ 1 [F
(d} T:.-R;J T(r)dr,
1 R
(b) B(T}=~j B[T()]dr,
R o

R
j k() T(r)dr

R
J k(r)B[T(r)]dr
0

B SE—
f x(r)dr

[}

(d} B(T)=

&
j x{r)yT{r}dr
{e) K= S

R
( T{rydr

j k(r)B[T(r)]dr
(f) .
j B[T(r)]dr

The predicted data for the intensity of radiation
emitting from a two-phase cylinder, which have been
obtained by performing numerical integration of the
transfer equation and using a one-dimensional
approximation, are presented in Figs. 4 and 5. It may
there be seen that the best coincidence is observed at
small optical thicknesses and, moreover, the un-
certainty introduced by relation (7) diminishes
considerably with a decrease in the probability of
quantum survival. Of the quoted averaging tech-
niques (a—d; e, f), the technique (a,e¢) is preferable.
With increase in the optical thickness, the one-
dimensional representation results in larger errors
since radiation from a hot central region scarcely
reaches the boundary surface. Figure 4 shows also
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F1G. 3. Luminescence indicatrix of a two-phase cylinder at
A=0.999. (1) 7, = 001;(2)0.05; (3) 1.0; (4} 10.0.
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or
FiG. 4. Comparison of the accurate predictions and
different averaging techniques for determining radiation of
two-phase cylinders (4 = 0.3). (a) 1, = 0.01; (b) 100.
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F1G. 5. Comparison of the accurate predictions and the
averaging technique (a,e) at different probabilities of
photon survival (1, = 0.01). (1) A =0.7; (2)0.9; (3) 0.99.

the effect of the parameter o which characterizes the
temperature field gradient in the medium under
study.

5. CONCLUSION

The suggested iterative method is very effective in
the case of a two-phase medium of cylindrical
geometry whose luminescence characteristics are to
be calculated. Accurate calculations of the emissivity
have allowed determination of the limits of applica-
bility for the approximate relation (7) which was
derived in [1]. The emissivity nomograms for a two-
phase cylinder are very practical when the spectral
relationships of the luminescence characteristics are
required. In the case of nonisothermal media, the
approximate relations used for homogeneous media
with averaging of the physical quantities may
introduce appreciable errors. Here it is necessary to
resort to the accurate numerical methods, one of
these being described in the present paper.
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LUMINESCENCE D’UN MILIEU BIPHASIQUE NON HOMOGENE ET
DE GEOMETRIE CYLINDRIQUE

Résumé—On propose une méthode itérative rapidement convergente pour résoudre Iéquation de

transfert radiatif. On montre quelle est la précision des formules antérieures pour I'émissivité d’un milieu

diphasique 4 géométrie cylindrique et on présente les nomogrammes d’émissivité. On analyse les limites

d’application d’une approche monodimensionnelle pour calculer la luminescence d’un milieu non
isotherme de géométrie cylindrique.

LUMINESZENZ VON INHOMOGENEN ZWEI-PHASEN-MEDIEN VON
ZYLINDRISCHER GEOMETRIE

Zusammenfassung—Es wird eine iterative, schnell konvergierende Methode fiir die Losung der

Strahlungsiibergangsgleichung vorgeschlagen. Die gute Genauigkeit der an anderer Stelle abgeleiteten

Gleichung fiir das Emissionsvermogen eines Zwei-Phasen-Mediums mit zylindrischer Geometrie wird

gezeigt und Nomogramme des Emissionsvermogens werden angegeben. Die Anwendungsgrenzen werden

untersucht fiir ein eindimensionales Verfahren zur Berechnung der Lumineszenz von nicht-isothermen
Medien mit zylindrischer Geometrie.

CBEUEHMUE JABYX®A3HbIX HEOAHOPOAHLIX CPE]] LIUWJIMHAPUYECKON
KOH®UI'YPALIUHU

Ansoramms — [1peaoxeH UTepalMOHHbIH ObICTPO CXOMALUMACH METO/ PELIEHHS YPABHEHHs NEpPEeHOCa

n3nyvenus. [lokasasa yROBJIETBOpHTENbHAS TOYHOCTb paHee TOJY4eHHOR ¢Gopmynsl Ais H3jy4a-

TeNIbHON cnocoOHOCTH AByxda3HON Cpeabl LMIHHAPMYECKOH KOH(PUIypauMH M MpHBEAEHB HOMO-

rpaMmbl 18 ee pacyeta. MccnenoBansl rpaHHubl MPUMEHHMOCTH OJHOMEPHOTO pacyeTa CBEYEHHA
HEW3IOTEPMHUECKUX CPel WHIHHAPHYECKOH KOHOUTypALMH.



